Een visie op het Al landschap

Ann Nowé

AI lab Vrije Universiteit Brussel

ai.vub.ac.be

The birth of Al

IJCAI 1956

"We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed on the basis of the conjecture that every

aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt

will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer."

John McCarthy

Marvin Minsky

Nathaniel Rochester

Claude Shannon

Ann Nowé

The birth of Al

IJCAI 1956

"We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and

concepts, solve kinds of problems now reserved

for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer."

John McCarthy

Marvin Minsky

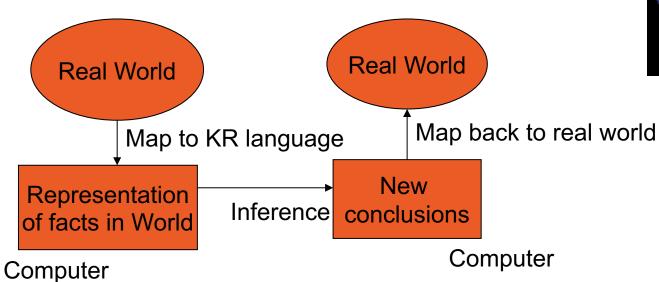
Nathaniel Rochester

Claude Shannon

The symbolic approach

Knowledge representation and state space search

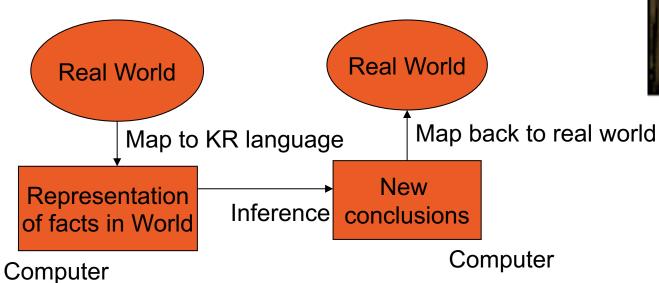
- Knowledge representation languages should have precise syntax and semantics.
- You must know exactly what an expression means in terms of objects in the real world.



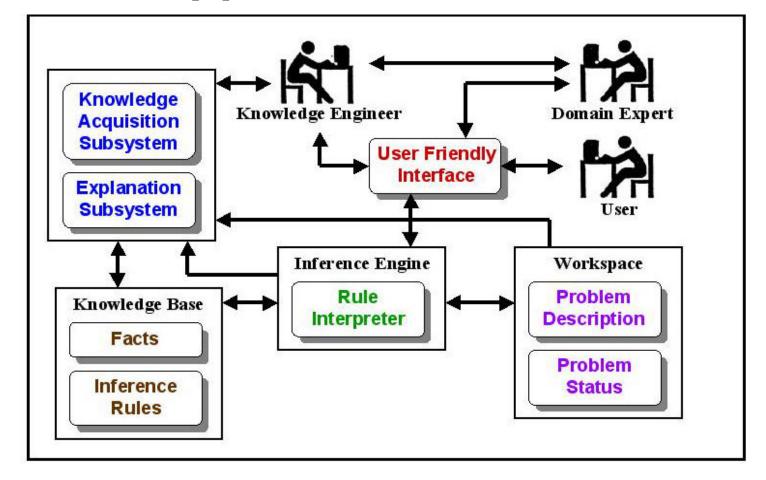
The symbolic approach

Knowledge representation and state space search

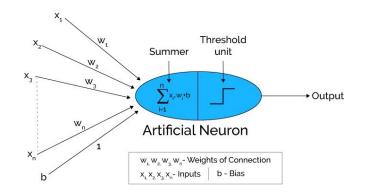
- Knowledge representation languages should have precise syntax and semantics.
- You must know exactly what an expression means in terms of objects in the real world.

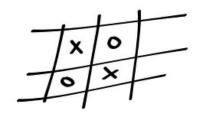


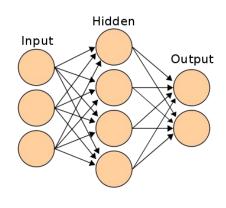
The symbolic approach



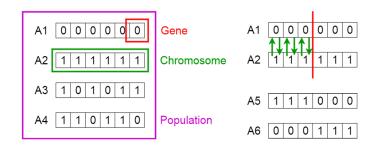
Sub-symbolic approach



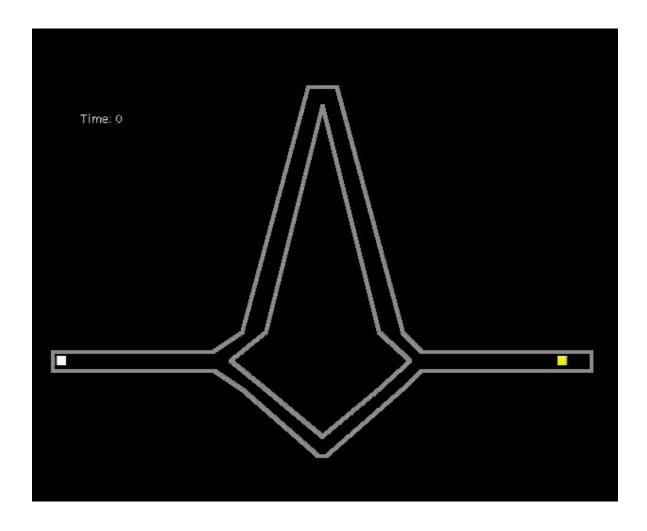


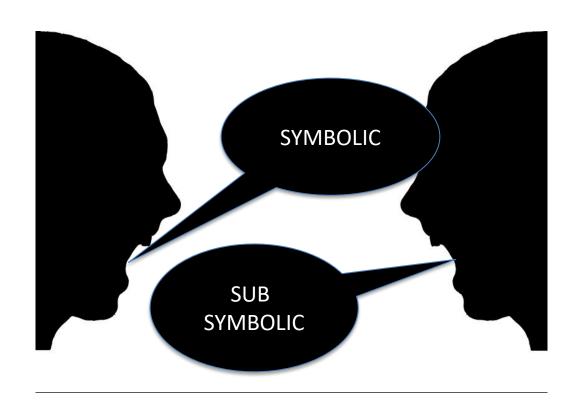


Genetic Algorithms

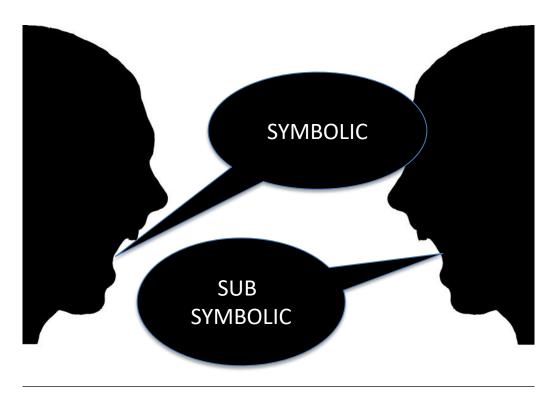


Ant algorithms

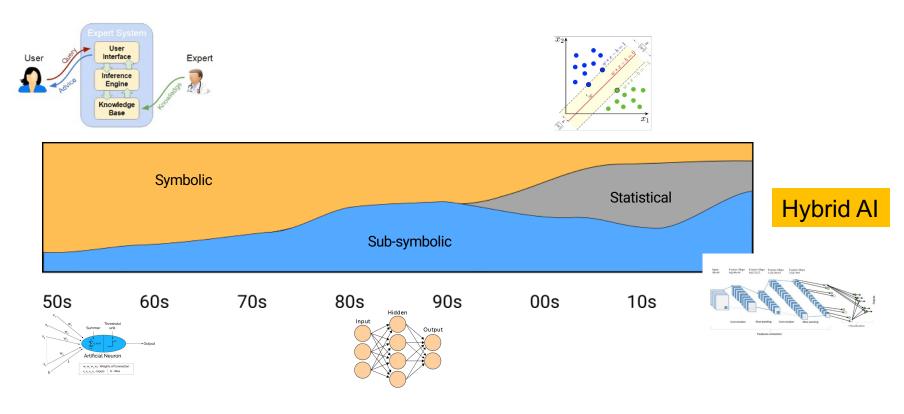




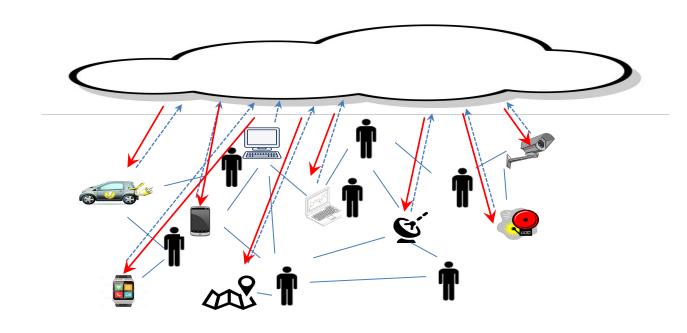
1988 AAAI Symposium on Parallel Models of Intelligence



Brief history of AI: the different movements

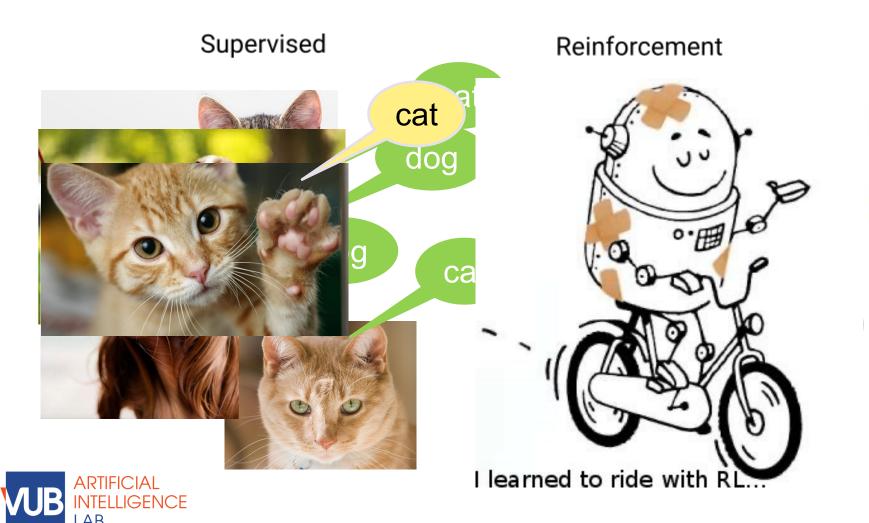


From data to big data

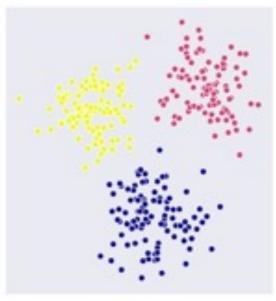


Self-driving cars

Subfields of Machine Learning

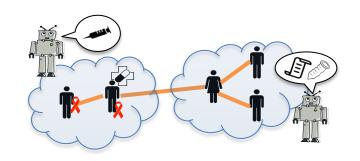


Unsupervised



Reinforcement Learning

Multi-agent Systemen en speltheorie



The Tragedy of the Commons

The population problem has no technical solution; it requires a fundamental extension in morality.

REAL-LIFE EXAMPLES

Garrett Hardin

CLOSING ROADS COULD SPEED UP TRAFFIC

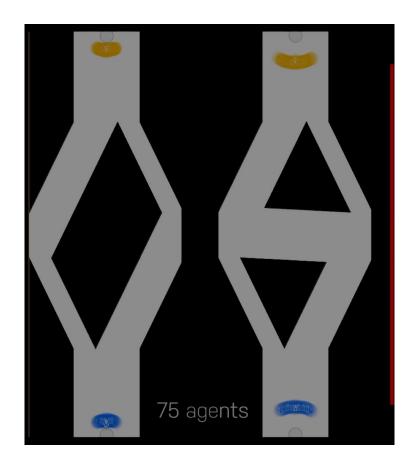
NEW YORK CITY 42ND STREET

BOSTON MAIN STREET LONDON

Ann Nowé

Braess paradox

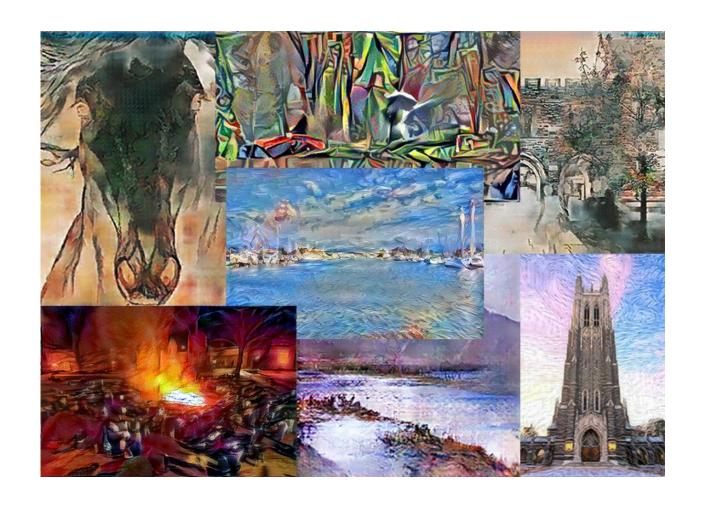
Braess paradox



In Game Two, the Google machine made a move that no human ever would And the conbeautiful ^ - ...

But in Game Four, the human made a move that no machine would ever expect. And it was beautiful too. Indeed, it was just as beautiful as the move from the Google machine---no less and no more. It showed that although machines are now capable of moments of genius, humans have hardly lost the ability to generate their own transcendent moments. And it seems that in the years to come, as we humans work with these machines, our genius will only grow in tandem with our creation

AI & kunst



Al: the good, the bad and the ugly

How artificial intelligence could hel

against (

Using big data and deep lear offering new ways of respond

19 August 2021 - by Priya Joi

Nature Public Health Emergency Collection

Ethics Inf Technol. 2021 Feb 9: 1-7.

doi: 10.1007/s10676-020-09567-7 [Epub ahead of print]

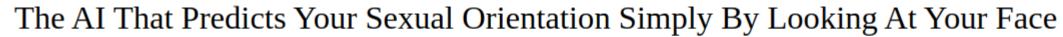
PMCID: PMC7871022

PMID: 33584129

The CLAIRE COVID-19 initiative: approach, experiences and recommendations

Gianluca Bontempi, ¹ Ricardo Chavarriaga, ² Hans eD Canck. ³ Emanuela Girardi. ⁴ Holger Hoos. ⁵ <u>Iarla Kilbane-Dawe</u>, ^{⊠6} <u>Tonio Ball</u>, ⁷ <u>Ann Nowé</u>, ⁸

Manlio ed Domenico, 12 Alessandro Saffiotti, 13 How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did



Bernard Marr, CONTRIBUTOR

FULL BIO V

Opinions expressed by Forbes Contributors are their own.

COURTS ARE USING ALTO SENTENCE CRIMINALS. THAT MUST STOP NOW

JASON TASHEA SECURITY 04.17.17 7:00 AM

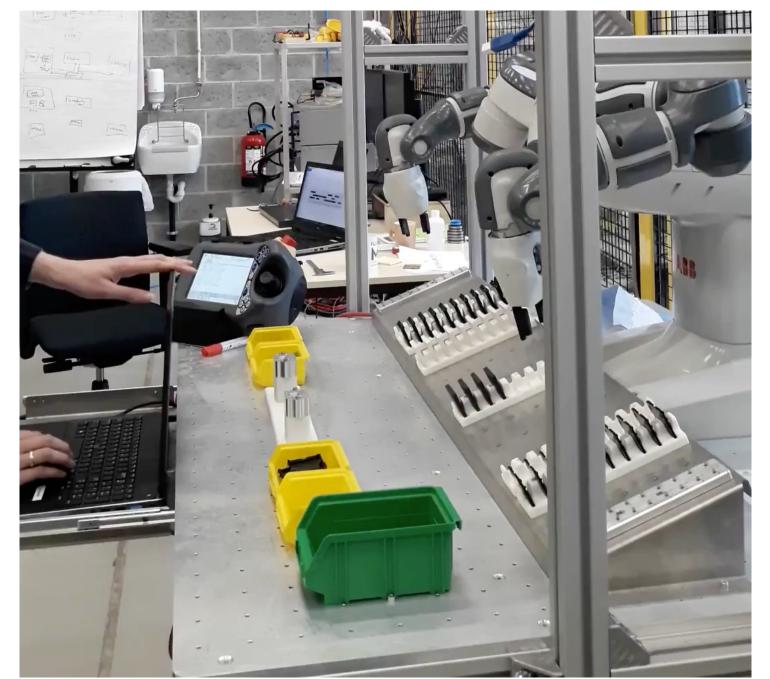
DataNews

FR ☑

rws 🗸 Analyse 🗸 Opinies Reviews Carrière 🗸 Events Generative AI ICT Guide

AI-tools kunnen vandaag al met 96 procent nauwkeurigheid de signalen van een exoplaneet herkennen.

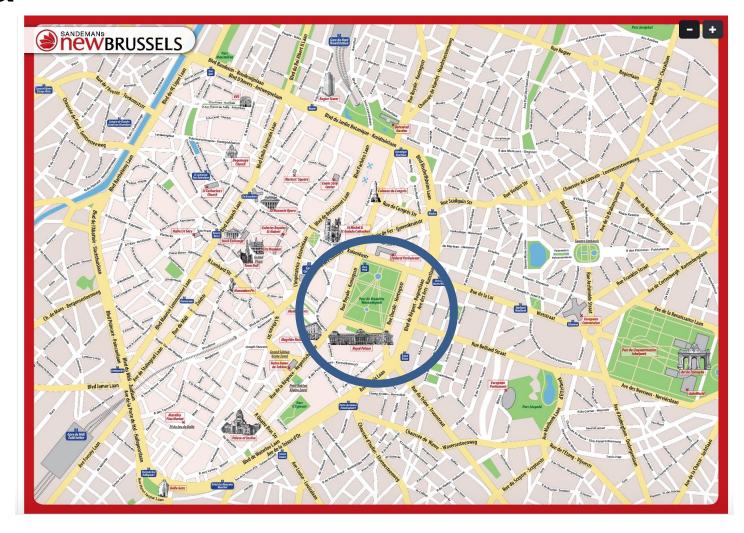
https://datanews.knack.be/nieuws/innovatie/ruimtevaart/kennis-over-ons-heelal-groeit-sneller-dan-ooit-met-dank-aan-ai/



Ann Nowé

beubobies |

The bad



The uggly

MONKEY CAGE

A computer program used for bail and sentencing decisions was labeled biased against blacks. It's actually not that clear.

By Sam Corbett-Davies, Emma Pierson, Avi Feller and Shar October 17, 2016 at 5:00 a.m. EDT

Gaat het algoritme in de fout? Is het algoritme fair?

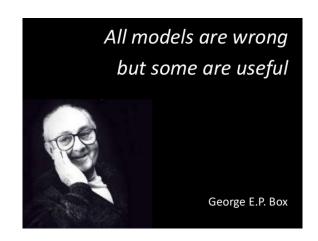
[29] $D(M(v_i), M(v_j)) \le d(v_i, v_j)$

Fairness Notion

Fairness through awareness

rable 13. Classification of fairness notions. (* notion newly defined in this paper)							
	Ref.	Formulation	Classification				

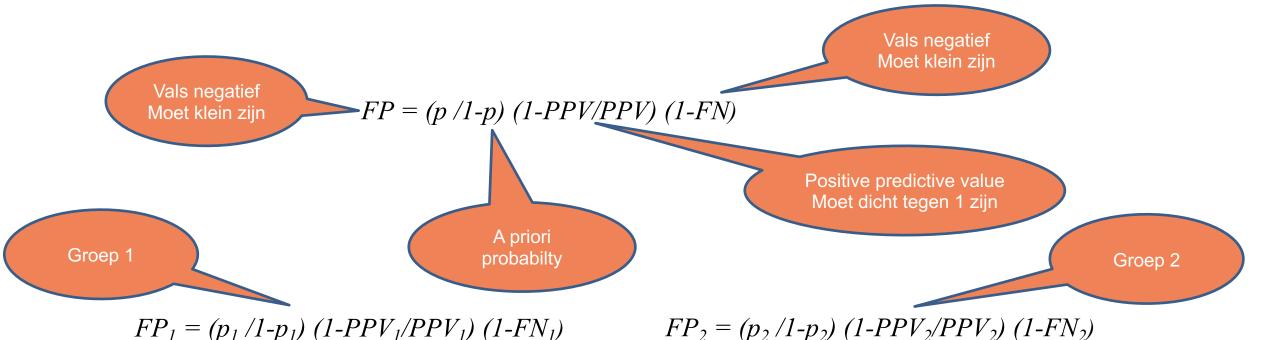
Fairness Notion	Ref.	Formulation	Classification	Type
Statistical parity	[29]	$P(\hat{Y} \mid A = 0) = P(\hat{Y} \mid A = 1)$	Independence (equivalent or relaxed★)	
Conditional statistical parity	[21]	$P(\hat{Y} = 1 \mid E = e, A = 0) = P(\hat{Y} = 1 \mid E = e, A = 1)^*$		
Equalized odds	[44]	$P(\hat{Y} = 1 \mid Y = y, A = 0) = P(\hat{Y} = 1 \mid Y = y, A = 1) \forall y \in \{0, 1\}$	Separation (equivalent or relaxed*)	
Equal opportunity		$P(\hat{Y} = 1 \mid Y = 1, A = 0) = P(\hat{Y} = 1 \mid Y = 1, A = 1)^*$		
Predictive equality	[21]	$P(\hat{Y} = 1 \mid Y = 0, A = 0) = P(\hat{Y} = 1 \mid Y = 0, A = 1)^*$		
Balance for positive class	[58]	$E[S \mid Y = 1, A = 0)] = E[S \mid Y = 1, A = 1]^*$		
Balance for negative class		$E[S \mid Y = 0, A = 0] = E[S \mid Y = 0, A = 1]^*$		
Overall balance	*	$E[S \mid Y = y, A = 0] = E[S \mid Y = y, A = 1] \forall y \in \{0, 1\}$		
Conditional use acc. equality	[10]	$P(Y = y \mid \hat{Y} = y, A = 0) = P(Y = y \mid \hat{Y} = y, A = 1) \forall y \in \{0, 1\}$		Group
Predictive parity	[18]	$P(Y = 1 \mid \hat{Y} = 1, A = 0) = P(Y = 1 \mid \hat{Y} = 1, A = 1)^*$	Sufficiency · (equivalent or relaxed*)	
Negative predictive parity	*	$P(Y = 1 \mid \hat{Y} = 0, A = 0) = P(Y = 1 \mid \hat{Y} = 0, A = 1)^*$		
Calibration	[18]	$P(Y = 1 \mid S = s, A = 0) = P(Y = 1 \mid S = s, A = 1) \forall s \in [0, 1]$		
Well-calibration	[58]	$P(Y = 1 \mid S = s, A = 0) = P(Y = 1 \mid S = s, A = 1) = s \forall s \in [0, 1]$		
Overall accuracy equality		$P(\hat{Y} = Y A = 0) = P(\hat{Y} = Y A = 1)$	Other metrics	
Treatment equality		$\frac{FN}{FP}(A=0) = \frac{FN}{FP}(A=1)$	from confusion matrix	
Total fairness	[10]	-	Independence, Separation and Sufficiency	
Total effect	1761	$TE_{a_1,a_0}(\hat{y}) = P(\hat{y}_{A \leftarrow a_1}) - P(\hat{y}_{A \leftarrow a_0})$	Causality	
Effect of treatment on treated	رتحي	$ETT_{a_1,a_0}(\hat{y}) = P(\hat{y}_{A \leftarrow a_1} \mid a_0) - P(\hat{y} \mid a_0)$		
No unresolved discrimination	1531	_		
No proxy discrimination	[22]	$P(\hat{Y} \mid do(P_x = p)) = P(\hat{Y} \mid do(P_x = p')) \forall P_x and \forall p, p'$		
Counterfactual fairness	[59]	$P(\hat{Y}_{A \leftarrow a}(U) = y \mid X = x, A = a) = P(\hat{Y}_{A \leftarrow a'}(U) = y \mid X = x, A = a)$		Indi
Causal discrimination	[38]	$X_{(A=0)} = X_{(A=1)} \land A_{(A=0)} \neq A_{(A=1)} \Rightarrow \hat{y}_{(A=0)} = \hat{y}_{(A=1)}$	Similarity Metric	Individual
			Jillianty Mictile	<u> </u>



Karima Makhlouf, Sami Zhioua, and Catuscia Palamidessi. 2021. On the Applicability of Machine Learning Fairness Notions. SIGKDD Explor. Newsl. 23, 1 (June 2021), 14–23. https://doi.org/10.1145/3468507.3468511

Ann Nowé

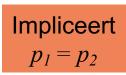
Kan een algoritme (model) fair zijn?



Model is fair als
$$FP_1 = FP_2$$

$$FN_1 = FN_2$$

$$PPV_1 = PPV_2$$



Explainable & Accountable Al

General Data Protection Regulation GDPR

Article 22:

All Al that has impact on human lives, will need to be explainable and accountable,

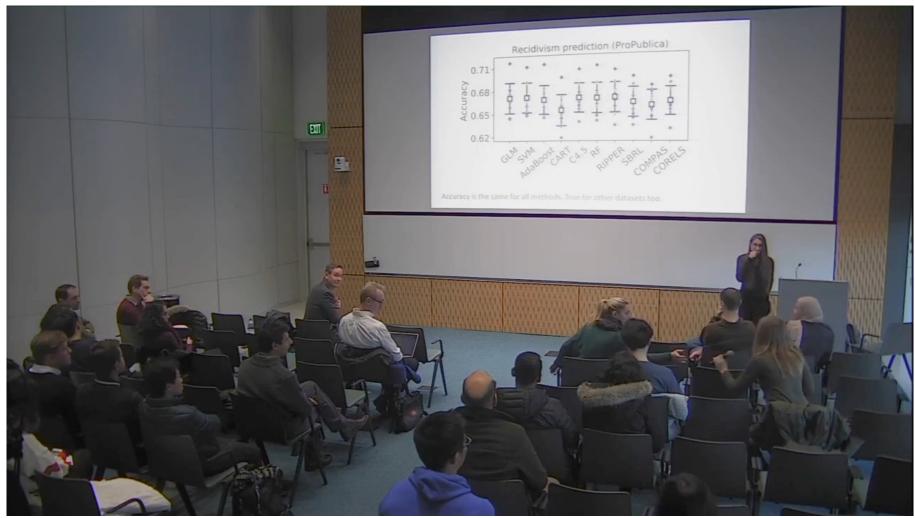
the interpretability of machine learning based models will be key for the usage of these models.

Black box vs white box

Black box model
Often very performant
But can not explain itself

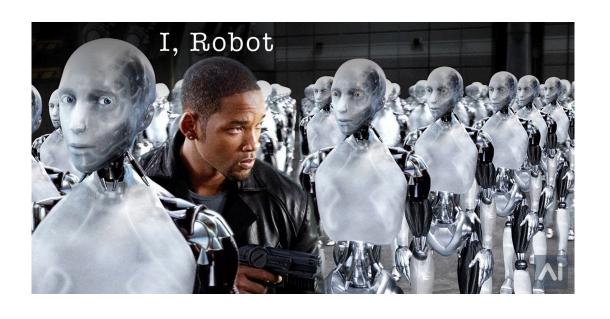
White box
Interpretable model
Transparent model
Robust model

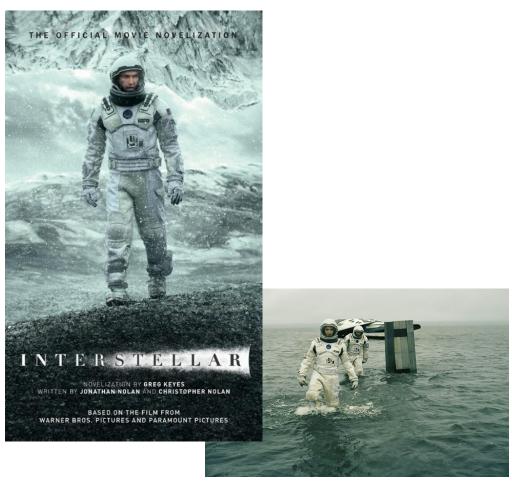
The uggly



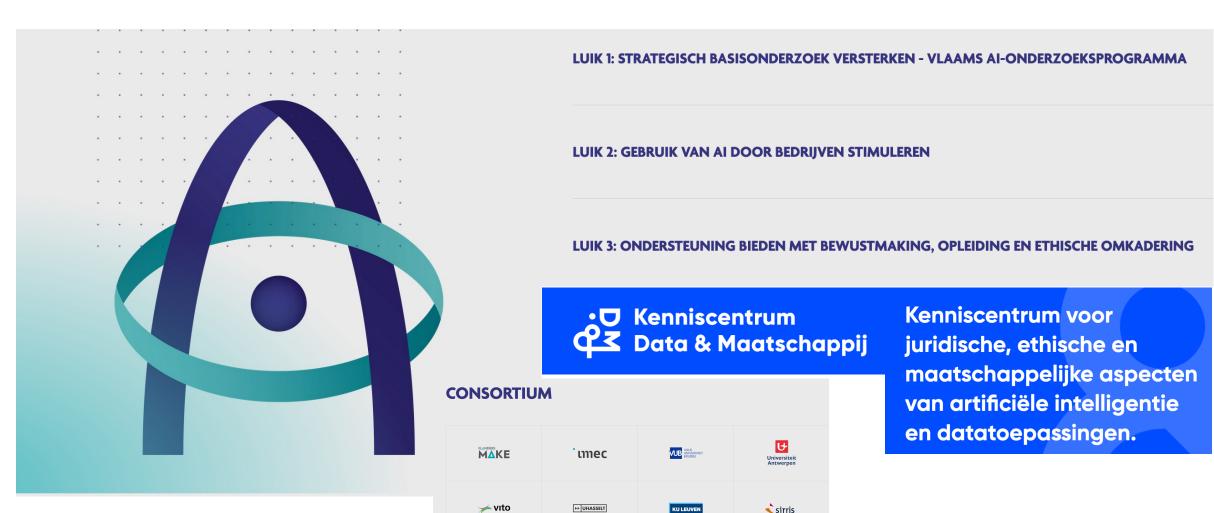
Artificial Intelligence versus consciousness

I, robot versus Interstellar





Vlaams Al-onderzoeksprogramma



Al experience center

